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Example Classification of Cancer Subgroups

® Assume data is clustered into groups, e.g.

cancer subgroups

¢ Classification of data against the clusters
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Introduction to Bayesian Networks
(Categorical Case)

Most popular causal model

Allows graphical interpretation

Challenges

— Learning the graph structure (NP-hard)
— Marginalization (NP-hard)

® Missing data requires marginalization
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Introduction to Bayesian Networks

with probability distribution P(Xy)

* DAG G = (V, E) with nodes V' and edges E /?\@
® Nodes V are associated with variables Xy @/‘><E)\ /@)\

e Factorization (Markov conditions) @ () )
P(Xv) =[] P(Xi | Xpaci))
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Marginalization in Bayesian Networks
(Categorical Case)

® Lete C V be evidence nodes, e.g.
observed variables

* Marginal probability distribution

P(Xe) = Z P(XVMXe)

Xy
by summing over V' =V \ e

= Problem is NP-hard
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Example of Highdimensional Bayesian Network

Approximate inference in blue
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Reduction of Sampled Variables

Definition (Irrelevant Node)

Anodei e VinaDAG G = (V, E) over Xv is irrelevant w.r.t. @

a set of nodes e if ({i} U de(i)) Ne=0.
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Reduction of Sampled Variables

Definition (Relevant Subgraph)

The relevant subgraph G’ of a DAG G w.r.t. a set of nodes e is the remaining graph after removal of all
irrelevant nodes and their edges.
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Reduction of Sampled Variables

Proposition (Marginalization over Relevant Subnetwork)

Let G’ be the relevant subnetwork of a DAG G w.r.t. a set of variables z. and let pg: and pg be the
respective probability distributions that satisfy the Markov properties. Then pg: (ze) = pg(xe)-
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Marginalization in Bayesian Networks

Definition (Conditionally Independent Subset)

Sl TR RN
LetU C V. A setof variables X = {X,, :u € U} isa (: :.
conditionally independent subset w.r.t. a set of variables x., if SNBAL [T
® all variables in the subset are d-connected, i.e. X; is
d-connected to X; w.rt. eVi,j € U, and Sy _———TT ‘@ TEm=a
® all variables in the subset are d-separated from the ’// \\\
remaining variables, i.e. X; is d-separated from X N ]
wrt eVie U,j e V\{UUe} \\®\ @,/
N ©
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Example for Complexity Reduction
In Junction-Tree Algorithm

Get Moral Graph of a DAG: 1. Moralization, 2. Triangulation

Original DAG Moral Graph Moral Graph with SGS

— Five additional edges — One additional edge
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Subgroup Separation

Proposition (Marginalization in Subsets)

Let G’ be the relevant subnetwork of a DAG G w.r.t. a set of nodes e. Let S = {54, ..., Sn} be the
conditionally independent subsets of the relevant subnetwork. Then

Pty 1.0 (1,
Q(xs,)

exact inference approximate inference

P(Xe)=P(Xe) T D orlesoxnixgue) |1 o(xs,)

S;i €Sexact X3, S j € Sapprox
-

where ™ = e N {mb(u) : u € S;}, e" =en{ch(u) :u € S;} and ¢’ = e\ {ef" Vi}.
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Example of Highdimensional Bayesian Network
Subgroup Separation

Approximate inference in blue
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Benchmark Results
Over Varying Dimensions
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Benchmark Results
Over Varying Dimensions

¢ Simulated DAGs
(100 DAGs, 10 iterations)
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Application

Classification of Cancer Subtypes

® Determine the cancer subtype of kidney
cancer samples

e Patient samples from Korean population
study

¢ Diagnosed with renal cell carcinoma (RCC)

— Clear cell RCC (ccRCC)
— Papillary RCC (pRCC)
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Application Results
Classification of Cancer Subtypes

Ratios of correctly assigned cancer type

® 68 % without marginalization
(cluster 26 genes, classify 26 genes)

® 76 % with marginalization
(cluster 70 genes, classify 26 genes)

® 83 % with complete data from TCGA
(cluster 70 genes, classify 70 genes)
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Application

Classification of Cancer Subtypes
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Standard Inference Methods

Standard approximate inference problem Marginal probability distribution

Find probability of a single variable Find probability of multiple variables
P(X;|Xe) P(X1, ..., Xn|Xe) (or P(X.))

Not easy to unify because P(X1, ..., Xn|Xc) # [ [, P(Xi|Xe, Xpa(i))

PN
*l «,

W (V)
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Conclusion

* Marginalization in Bayesian networks

— Present efficient method ) ‘
— Allows to handle missing data i
- R package SubGroupSeparation (‘ @\,\ 9/8 fi? 7 Q C

??"

e Separation to subgroups can be generalized

to other approximate inference schemes "\8/ - @@g% @\ij %gof@

ETHzirich December, 19th 2021 19/19



ETH:irich

Thank you for your attention!

Preprint: https://arxiv.org/pdf/2112.09217.pdf
Code: https://github.com/cbg-ethz/SubGroupSeparation
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